Learning About Lift Stations

Lift Stations: The Basics

JETT Pump & Valve, LLC provides a variety of services for municipal, industrial, and commercial customers. Lift stations are commonly our patients for the services we preform. Most people are not familiar with what a lift station is. They might live next to one or drive past one every day and never know that it was there or what it does. But that is a good thing - it means that the lift station is doing it's job. Lift stations are a critical part of the overall sewage and drainage systems that keep plumbing and sewage disposal systems working around the clock. They are just a part or the system that makes daily life easier.

Learning About Lift Stations - Blog & Latest News | JETT Pump & Valve - PM0315_Products_pvf_CPS-Pipe-Rail_feat

Those who work in the water and wastewater industry, however, know the headache that a downed lift station can cause. If it's really bad, then maybe everyone will get to hear about it on the news. No one wants to have to claim responsibility for that lift station!

By following these suggestions, chances of experiencing a catastrophic lift station failure can be significantly reduced. To begin with, there are two main elements to a lifting station: the wet-well and the controls. The wet-well is a basin that the inflow is discharged into and where the pumps sit. This basin can be made out of steel but is more commonly made of fiberglass or concrete. Usually, there are two pumps in the wet-well, this type of station is called a duplex lift station. Each pump has their own check valve and shut off valve which flow into the outflow. There can be variations to this design including only one pump or even three pumps instead, although less common.

The check valves stop the pumped water flow from coming back into the wet-well when the pumps shut off and keep one pump from pumping back into the other. A shut-off valve allows for the isolation of each pump and pumps usually sit on disconnects mounted to the floor which have guide rails extending the full depth of the station which allow for individual pumps to be removed and serviced by using a cable or chain without having to enter the station. Furthermore, most stations have a level-sensing device which can take the form of mechanical float switches, a transducer, or both.

In the case of float switches, typically four are used. The lowest is called the off float, the next highest is the lead float, then the lag float, and finally the high water/alarm float. The purpose for having these is that in normal operation the pumps switch back and forth after each pumping cycle. An alternator selects which pump will be the “lead.” This pump will turn on when the water level reaches the lead float. The other pump is now called the “lag,” and will turn on if the water level reaches the lag float. At this time, both pumps are now on until the off float is triggered. The next time the lead float is triggered the other pump will assume the “lead” role.

This is a way for the pumps to back each other up in case a problem occurs. A transducer works by varying the amount of DC voltage it sends back to the control panel in relation to the water level in the wet-well. Triggering the pumps is most commonly handled through a transducer level controller. The control panel is the brain of the equipment. It contains the circuit breakers, motor starter, overloads, pump controller software (if applicable), and communication devices (if applicable).

The control panel may contain high voltage and phases, so take the necessary precautions to prevent injury. The overload is tripped (causing the pump to turn off) if too much current is drawn by the pump. This can be caused by a dead short, locked pump, water in the motor, an object caught in the impeller, etc. The floats run off a low voltage system and use either the pump controller or a printed circuit that activates the pumps.

Each pump also has a hand-off-automatic (HOA) switch. The hand position (H) runs the pump (in manual mode) and the automatic position (A) runs the pump off the level sensors. If a single phase system is used the panel would also house capacitors to start and run the pump. Typically, the control panel also displays the pump’s thermal overload protection and seal failure sensors in the form of a light and reset button. These trigger the pumps to turn off if they are tripped. The panels also contain the hour meters and phase protectors (if applicable).

REMEMER, never assume that the power is off until you have checked it with a voltmeter and do not work on the panel until this is done.



The pumps, electronic controls and electrical works are under constant physical stress, and the corrosive environment requires constant maintenance repair. There is, however, a point where they need to be rebuilt with wholesale equipment replacement. On average that is about every 15 to 25 years. For larger capacity pumps it is recommended to rebuild at least one pump a minimum of every two years. Performance of routine and preventative maintenance can save station's owner from costly repair bills. The following are suggestions that may insure fewer breakdowns and problems:

  1. Wet wells should be pumped out and cleaned at least twice a year, or more often if necessary, to prevent solids and grease build-up. Build-up of solids can create gases that can damage the pump, or sink and get caught in the impeller.
  2. Inspection of submersible pumps should be performed quarterly or at least semi-annually. Inspection of the impeller should be performed quarterly or when motor hours are not within specifications. The inspections would assure that the impeller is free of debris or any other clogging material.
  3. Inspection and greasing of the check valves should be performed at least twice a year to insure proper working order and to prevent back-flow from the force main to the wet well.
  4. Cleaning and inspections of floats four times a year assure proper performance. The buildup of grease prevents floats from working properly.
  5. Inspection of the light and alarm systems should be performed weekly. An alarm system in working order can alert you to problems immediately.
  6. Installation of an hour meter on each motor will give one an accurate record of how often each motor is cycling; and hence, the amount of water being pumped through the system. A logbook of motor hours, dates and maintenance performed should be kept.
  7. Amp readings should be taken at least once a month on each station motor. If the amp readings do not meet the manufacturer's specifications, it is an indication that debris is lodged in the propeller within the motor, or that water has entered the motor housing or the wiring.
  8. An inspection of all electrical motor control equipment to find poor connections and worn parts should be performed semi-annually.
  9. Inspection and Cleaning of the basin, clean-outs, and covers should be performed to prevent build-up. In high corrosion prone environments all moving parts should be operated and greased if necessary to ensure mechanical components are not at risk of failure.
  10. Keep inspection records! They can assist in every aspect of maintenance, if there is good record keeping you can easily determine a problem with the system in some cases. Records are needed to prove that system is operating properly, and can assist in determining if any future maintenance is required.


If you're having an issue with your lift station functioning properly, call JETT Pump & Valve, LLC for 24/7 Emergency service! We also have a lift station inspection program, we'll help you keep your lift station running at peak performance, request a quote today!



Variable Frequency Drives 101

Utilizing pumps on a regular basis can be a costly operation; they can run for hours at a time and require a tremendous amount of power to run. We all know (or might not know) that energy efficiency starts with motor speed control. To keep things...

IWAKI AIR AODD Pumps now at JETT Pump

  JETT Pump & Valve, LLC now proudly distributes IWAKI AIR! Iwaki Air AODD pumps or Air Operated Diaphragm pumps are engineered for maximum utility. They are portable and easy to install, operate, and maintain. Infinitely variable...

How to Read Pump Curves

Pump Curves for Pump Selection 101 For those in the pump industry, learning how to read a pump curve or performance curve can be incredibly useful if not downright necessary. For us here at JETT Pump, one of the ways we apply our knowledge...

What Happens After the Flush

What Happens After the Flush? “Outta sight, outta mind” is the attitude most of us have when flushing a toilet. We don’t want to think about it or ask about it, but someone has to answer it. So what really happens after you...

#TBT JETT Pump Solves Clogging

Costly Clogging Problem Solved by Barnes SH Pumps #TBT Throwback Thursday! Back in 2010 the City of Inkster, MI was experiencing persistent recurring clogging- almost every 48 hours! And sometimes after only ten minutes of being unclogged!! The...

Preventative Motor Testing

JETT Pump & Valve, LLC Adds Preventative Motor Testing Waterford, MI March 1, 2016, JETT Pump & Valve, LLC is pleased to announce that they have added a new manufacturer, ALL-TEST Pro, LLC to their extensive product line. This new...

Walchem Liquidation Sale

Walchem On Sale - Going on NOW! Check out the start of our Walchem Liquidation Sale on eBay! There are some new in box older model metering pumps posted right now, take a look! JETT Pump on eBay    

7 Deadly Toilet Sins

Don't Flush This! The universe gave us both toilets and trash cans, and each are to be used responsibly! When you flush things down the toilet, they simply don’t just disappear. By doing so, you are allowing it to enter into the...

Welcome to Our New Website!

We've added great new features and updated our content to bring you the most up to date information about our company.  Check back often for updates.
Page: 123 - All